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Abstract 

 
 The digital Electroencephalogram (EEG) was recorded from19 scalp locations 

from 625  screened and evaluated normal individuals ranging in age from 2 months to 82 

years.  After editing to remove artifact; one year to 5 year groupings were selected to 

produce different  average age groups..  Estimates of Gaussian distributions and 

logarithmic transforms of the digital EEG were used to establish approximate Gaussian 

distributions when necessary for different variables and age groupings.   The sensitivity of 

the lifespan database was determined by Gaussian Cross-Validation for any selection of 

age range in which the average percentage of Z scores ± 2 st. dev. equals approximately 

2.3% and the average percentage for ± 3 st. dev. equals approximately .13%.   It was 

hypothesized that measures of Gaussian cross-validation of Z scores is a common metric 

by which the statistical sensitivity of any normative database for any age grouping can be 

calculated.   This notion was tested by computing eyes closed and eyes open Average 

Reference and Current Source Density norms and independently cross-validating and 

comparing to the Linked Ears norms.   The results indicate that age dependent Digital 

EEG normative databases are reliable and stable and behave like different Gaussian 

lenses that spatially focus the Electroencephalogram.   Clinical correlations of a 

normative database are determined by content validation and correlation with 

neuropsychological test scores and discriminate accuracy.    Non-parametric statistics 

were presented as an important aid to establish the alpha level necessary to reject a 

hypothesis and to estimate Type I and Type II errors, especially when there are multiple 

comparisons of an individual’s EEG to any normative EEG database.   
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1.0- Introduction 

 There are many potential uses of a normative EEG database among the most 

important being a statistical “guess” as to the “error rate” or to the probability of finding a 

particular patient’s EEG measure within a reference normal population. 1  Most other uses 

of a reference EEG database also involve statistics and the same statistics that all of 

modern clinical medicine relies upon.   For example, null hypothesis testing, measures of 

reliability, sensitivity, power, predictive validity, content validity, etc.  all depend on 

specific assumptions and statistical procedures.   

 Predictive accuracy and error rates depend on the data that make up a given EEG 

database and the statistics of the database.  The statistical foundations of the scientific 

method were visited by the Supreme Court in Daubert, 1993 regarding admissibility of 

scientific evidence.    The Four Daubert Factors for scientific standards of admissibility 

in Federal Courts were: 1-  hypothesis testing, 2- error estimates of reliability and 

validity, 3- peer reviewed publications and 4- general acceptance (Mahle, 2001) 2.    

These four Daubert factors for several EEG normative database have already been met.  

The minimal standards are publication of: 1- inclusion/exclusion criteria, 2- methods to 

remove artifact and adequate sample sizes per age groups, 3-  demographic 

representativeness  (e.g., balanced gender, ethnicity, socioeconomic status, etc.), 4-  

means and standard deviations as being normally distributed or “Gaussian” including 

Gaussian Cross-Validation and, 5- Content validity by correlations with 

Neuropsychological test scores and school achievement scores, etc. as validation.  

Predictive validity is determined by regression and classification statistics.   Predictive 

validity relates to the classification accuracy, clinical severity, clinical outcome, etc. 

estimates.    The sensitivity and specificity of any EEG database is directly proportional to 

its adherence to the established statistical principals in the history of statistics (Hayes, 

1973).   

 

                                                 
1 The phrase ‘reference normal’ is used to emphasize: that the term “normative” when used alone tends to 
obscure or mask the fundamental fact that only a “sample” of subjects drawn from a much larger population 
are contained in any data base. 
2 The court benefited by input from the American Academy of Science and 13 Nobel Laureates.   
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1.1 – General Method to Produce a Valid Normative EEG Database 

 Figure 1 is an illustration of a step by step procedure by which any normative 

EEG database can be validated and sensitivities calculated.   The left side of the figure is 

the edited and artifact clean and reliable Digital EEG Time Series which may be re-

referenced or re-Montaged, which is then analyzed in either the time domain or the 

frequency domain.  

Fig. 1 - Illustration of the step by step procedure to Gaussian cross-validate and then validate by correlations 
with clinical measures in order to estimate the predictive and content validity of any EEG normative database.  
The feedback connections between Gaussian Cross Validation and the means and standard deviations refers to 
transforms to approximate Gaussian if the non-transformed data is less Gaussian (see section 6).   The Clinical 
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Correlation and Validation arrow to the Montage stage represents repetition of clinical validation to a different 
montage or reference or condition such as eyes open, active tasks, eyes closed, etc.  to the adjustments and 
understanding of the experimental design(s) (see sections 6 to 8). 
  

 The selected normal subjects are grouped by age with sufficiently large sample 

size and the means and standard deviations of the EEG time series and/or Frequency 

domain analyses are computed for each age group.   Transforms are applied to 

approximate a Gaussian distribution of the EEG measures that comprise the means.   

Once approximation to Gaussian is completed, then Z scores are computed for each 

subject in the database and leave one3 out Gaussian Cross-Validation is computed in 

order to arrive at an optimum Gaussian Cross-validation sensitivity.    Finally the 

Gaussian validated norms are subjected to content and predictive validation procedures 

such as correlation with Neuropsychological test scores and intelligence, etc. and also 

discriminant analyses and neural networks and outcome statistics, etc.   The content 

validations are with respect to clinical measures such as intelligence, neuropsychological 

test scores, school achievement, clinical outcomes, etc.  The predictive validations are 

with respect to the discriminative, statistical or neural network clinical classification 

accuracy.  Both parametric and non-parametric statistics are used to determine the content 

and predictive validity of a normative EEG database.. 

 

1.2- Example of a Normative EEG Database and the Procedure in Section 1.1 

 An example of the step-by-step procedure in Figure 1 to produce a validated 

normative digital EEG database will be provided to show how any normative reference 

                                                 
3 The leave-one-out is a bit over sold, because the fact is that leave-one-out is self-referential with respect to 
the particular population that was selected and it is the nearly the same as simply computing the Z scores 



 6 

database can be constructed to meet measurable standards of reliability and validity. The 

Steps in Figure 1 can be repeated for different selections of subjects  

 

2.0 - Subject and Variable Selection 

 Nineteen (19) channels of EEG and a EOG (Electro-Oculogram) channel, a two 

hour battery of evoked potential tests and active challenges, psychometric tests, dietary 

evaluations, anthrometric measurements, demographic and trace element measurements 

from a population of 1,015 rural and urban children were collected (Thatcher et al, 1983; 

1987; Thatcher, 1997).  The principal goal of this project was to evaluate the effects of 

environmental toxins on child development and to determine the extent to which good or 

poor diets may ameliorate or exacerbate the deleterious effects of environmental toxins.  

Two data acquisition centers were established, one at the rural University of Maryland 

Eastern Shore campus and one at the urban campus of the University of Maryland School 

of Medicine in Baltimore, Maryland.  Identical data acquisition systems were built and 

calibrated, a staff was trained using uniform procedures and a clinical and psychometric 

protocol were utilized in the recruitment of normal subjects.  The total of 1,015 subjects 

ranging in age from 2 months to 82 years were tested during the period from 1979 to 

1987.  Of these subjects, 564 met the criteria of normalcy and were included in the 

normative reference database (Thatcher et al, 1987; Thatcher 1997).   In 2000 the original 

digital EEG was revisited and a different selection of individuals was selected that also 

spanned the same interval from 2 months to 82 years and included 61 additional adult 

subjects to give rise to a total sample size of 625 subjects.  The expanded selection 

                                                                                                                                                 
without replacement.  Multiple independent validations are impractical, therefore, reliance on the clinical 
correlations are more important, whether or not leave-one-out procedures were used. 
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contained more individuals between the ages of 25 and 55 years of age.  

 Figure 2 shows the number of subjects per year in the normative EEG lifespan 

database.  It can be seen that the largest number of subjects are in the younger ages (e.g., 

1 to 14 years, N = 470) when the EEG is changing most rapidly.  As mentioned 

 

Fig. 2 - The number of subjects per year in the Lifespan EEG reference normative 
database.  The database is a “life-span” database with the 2 months of age being the 
youngest subject and 82.3 years of age being the oldest subject.  This figure shows the 
number of subjects constituting mean values which range from a mean of .5 years to 62.6 
years of age and constituting a total number of subjects = 625.  
 

previously, a proportionately smaller number of subjects represents the adult age range 

from 14 to 83 years (N = 155).   Fifteen one-year groupings of subjects were computed 

with reasonable sample sizes from birth to 15 years of age.   Thirteen out of the 15 one 

year age groups have N > 20 with the largest sample size at age 3 to 4 years, N = 45.   The 

smallest one year sample size was between age 2 and 3 when N = 16. 
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 For each subject, original selections of the original digital EEG occurred by 

different artifact procedures involving the use of NeuroGuide editing selections in 2001.   

Original arrangements of coherence, phase, amplitude asymmetry and relative power also 

occurred when comparing the database to previous publications and the 1988 copyright 

(Thatcher et al, 1987; Thatcher, 1988; Thatcher, 1997).   Although different selections of 

digital EEG values and different arrangements of the original digital EEG have occurred 

since 1987, nonetheless, the Gaussian validations and sensitivities of the previous 

databases and the current 2001-2002 database were all similar and equally valid and 

Gaussian distributed within a  90% to 99% range depending on the measure.   The 

original digital EEG and subjects and neuropsychological test scores that were measured 

from 1979 to 1987 are the same. 

 
3.0- Inclusion/Exclusion Criteria, Demographics and Gender 

 Details of the neuropsychological testing, demographic and sampling of the 

normative 1987 EEG database were previously published in Thatcher et al (1983; 1986; 

1987) and Thatcher (1997).  Some but not all of the 61 adults added in 2000 - 2001 were 

given neuropsychological tests and other evaluations to help determine “normalcy”, 

however, all of the subjects were interviewed and filled out a history and neurological 

questionnaire.   All of the 61 added adults were gainfully employed as professors, 

graduate students, and other successfully employed adults without a history of 

neurological problems.    Normalcy for the age range from 2 months to 18 years was 

determined by one or more exclusion/inclusion criteria: 1- a neurological history 

questionnaire given to the child’s parents and/or filled out by each subject, 2- 

psychometric evaluation of I.Q., and/or school achievement, 3- for children the teacher 
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and class room performance as determined by school grades and teacher reports and 

presence of environmental toxins such as lead or cadmium.  A Neurological questionnaire 

was obtained from all of the adult subjects >18 years of age and those in which 

information was available about a history of problems as an adult were excluded.   .   

 
3.1- Intelligence and School Achievement Criteria:  

  Psychometric, demographic and socioeconomic status measures were obtained 

from each child, adolescent and for some of the adults.  Different psychometric tests were 

administered depending upon the age of the child.  There is little reliability in the I.Q. 

tests of infants, however, when possible the infant's Apgar Score was obtained and the 

Vineland Social Maturity Scale test was administered (age birth to 2 years, 4 months).  

From age 2 years to 3.99 years, the McCarthy Intelligence Scale Test was administered, 

from age 4.0 years to 5.99 years the Weschler Pre-school and Primary Scale of 

Intelligence (WIPPSI) test was administered, from age 6.0 years to 16.99 years the 

Wechsler Intelligence Scale for Children (WISC-R, 1972) was administered and from age 

17.0 years to adulthood the Wechsler Adult Intelligence Scale test (WAIS) was 

administered.  In addition to Intelligence Tests, the Wide Range School Achievement test 

(WRAT) was administered to the school age children and grade cards were obtained from 

the public school systems.  Finally, a variety of neuropsychological tests were 

administered including the pegboard test of skilled motor movements, the Stott, Moyes 

and Henderson Test of Motor Impairment (MIT) and a eight item laterality test (see 

Thatcher et al, 1982; 1983 for further details).  

      The criteria for entry into the normative database for those subjects given I.Q. tests 
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and school achievement tests were: 

1- A Full Scale I.Q. > 70. 

2- WRAT School Achievement Scores > 89 on at least two subtests (i.e., reading, 

spelling, arithmetic) or demonstrated success in these subjects.  

3- A grade point average of 'C' or better in the major academic classes (e.g., English, 

mathematics, science, social studies and history).  

 

3.2-  Demographic Characteristics: 

 It is important that the demographic mixture of males and females, different 

ethnic groups and socioeconomic status be reasonably representative of expected North 

American clientele.  The normative EEG database is made up of 58.9% males, 41.1% 

females, 71.4% whites, 24.2% blacks and 3.2% oriental.  Socioeconomic status (SES) 

was measured by the Hollingshead four factor scale (Hollingshead, Four factor Index of 

Social Status, 1975).  (see Thatcher et al, 1983 for details). 

 

3.3 - Time of Day and Other Miscellaneous Factors 

 There are many uncontrollable factors that influence the frequency spectrum of 

the EEG.  In general these factors are all confounded, and it would require an enormously 

expensive and large sample size to control each factor individually.  Even if one could 

control each factor, such experimental control would preclude the practical use of a 

database since each patient’s EEG would have to be acquired in a precisely matching 

manner.   Statistical randomization is one of the best methods to deal with these 

uncontrollable and miscellaneous factors.  Statistical randomization of a database 

involves randomly varying time of day of EEG acquisition, time between food intake and 
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EEG acquisition, food content and EEG acquisition, etc. across ages, sex and 

demographics.  Because these factors are confounded with each other, randomization 

with a sufficient sample size will result in increased variance but, nonetheless, 

convergence toward a gaussian distribution.  Such convergence, even in the face of 

increased variance, still allows quantitative comparisons to be made and false positive 

and false negative error rates (i.e., sensitivity) to be calculated.  The method of statistical 

randomization of miscellaneous factors was used in the Matousek & Petersen, Thatcher, 

John and Duffy EEG normative databases (John et al, 1988; Thatcher et al, 1989; Duffy 

et al, 1994).  

 

4.0 – Digital Electroencephalographic Recording Procedures 

 EEG was recorded  and digitized at a rate of 100 Hz from the 19 leads of the 

International 10/20 system of electrode placement referenced to linked ear lobes and one 

bipolar EOG lead (Electrooculogram) (i.e., a total of 20 channels). (Thatcher et al, 1983; 

1986; 1987, Thatcher 1997).  When head size was amenable, the data were acquired using 

a stretchable electrode cap (Electrocap International, Inc.).  When head sizes were either 

too small or too large for the electrocap, then the electrophysiological data were acquired 

by applying standard silver disk Grass electrodes.   Amplifiers were calibrated using sine 

wave calibration signals and standardized procedures and a permanent record made 

before and after each test session.  The frequency response of the amplifiers was 

approximately 3db down at 0.5 Hz and 30 Hz.  Impedance was measured and recorded 

for each electrode and efforts were made to obtain impedance measures less than 10K 

ohms (most of the impedance’s were < 5k ohms) for all subjects.   
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4.1 – Artifact Removal and Quality Control Procedures  

 EEG recording lengths varied from 58.6 seconds to 40 minutes.  Artifact rejection 

involved using the NeuroGuide editing procedures in which a 1 to 2 second template of 

“clean” or “artifact free” EEG was selected.   This template was then used to compute 

matching amplitudes of EEG using a flexible criteria of equal amplitudes to amplitudes 

that are 1.25 or 1.5 times larger in amplitude.   The decision as to which clean EEG 

sample multiplier to use was determined by the length of the sample 58.6 seconds as a 

minimum, visual inspection of the digital EEG and when split-half reliability > 0.97.   

After multiple visual inspections and selection of “clean” EEG samples the edited 

samples varied in length from 58.6 seconds to 142.4 seconds.   Average split-half 

reliability = 0.982 for the selected EEG in the database.   Care was taken to inspect the 

EEG from each subject in order to eliminate “drowsiness” or other state changes in the 

EEG which may have been present in the longer EEG recording sessions.  No evidence of 

sharp waves or epileptogenic events were present in any of the EEG records. 

 

4.2- Re-Montage to the Surface Laplacian and Average Reference 

  The average reference involved summing the voltages across all 19 leads for each 

time point and dividing this value into the microvolt digital value from each lead at each 

time point.  This procedure produced a digital EEG time series that was then submitted to 

the same age groupings and Power Spectral analyses and the same Gaussian normative 

evaluations as for Linked ears.   See Figure 1. 

 The reference free surface Laplacian or current source density (CSD) was 
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computed using the spherical harmonic Fourier expansion of the EEG scalp potentials  to 

estimate the current source density (CSD) directed at right angles to the surface of the 

scalp in the vicinity of each scalp location (Pascual-Marqui et al., 1988).  The CSD is the 

second spatial derivative or Laplacian of the scalp electrical potentials which is 

independent of the linked ear reference itself.  The Laplacian is reference free in that it is 

only dependent upon the electrical potential gradients surrounding each electrode.  The 

Laplacian transform also produces a new digital EEG time series of estimates of current 

source density in microamperes, that were also submitted to the same age groupings 

Spectral Analyses (see Figure 1). 

 

4.3 - Complex Demodulation Computations 

 The mathematical details of both the FFT and complex demodulation are 

adequately described in Otnes and Enochson, (1977);  Bendat and Piersol, (1981).   The 

EEG norms use both the complex demodulation and the FFT so that users can compare 

and contrast both methods in the same subject or application.  Complex demodulation is a 

time domain digital method of spectral analysis whereas the fast Fourier transform (FFT) 

is a frequency domain method.  These two methods are related by the fact they both 

involve sines and cosines and both operate in the complex domain and in this way 

represent the same mathematical descriptions of the power spectrum.  The advantage of 

complex demodulation is that it is a  time domain  method and less sensitive to artifact 

and it does not require even integers of the power of 2 as does the FFT.   The FFT 

integrates frequency over the entire epoch length and requires windowing functions which 

can dramatically affect the power values whereas complex demodulation does not require 
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windowing (Otnes and Enochson, 1972; 1978).   Complex demodulation was computed 

for the linked ears and eyes closed condition.   Future analyses are being considered for 

the computation of complex demodulation for average reference and the Laplacian 

estimate of current source density for eyes open and closed conditions.  However, due to 

the large amount of data and the large number of computations, the FFT may be the 

preferred method to conduct these analyses.  

.    

4.4 – FFT Linked Ears, Average Reference and Laplacian 

 The 100 samples per second digital EEG were cubic-spline interpolated to 128 

samples per second using standard procedures (Press, 1994).  The second step was to high 

pass filter the EEG at 40 Hz to eliminate any possible splice artifact that may have been 

produced by the short segment NeuroGuide editing method described in section 4.1.   The 

third step was to compute the FFT Power Spectral Density.   Four second epochs were 

used to compute the FFT Power Spectral Density thus producing 0.5 Hz resolution and a 

Hanning window was used for each 4 second epoch computation.  The 75% sliding 

window method of Kaiser and Sterman (2001) was used to compute the FFT normative 

database for linked ears, average reference and Laplacian estimator of current source 

density (CSD) in which successive four second epochs were advanced by 500 millisecond 

steps in order to minimize the effects of the FFT windowing procedure.  The FFT Power 

Spectral Density and the 256 point and 2 second epochs produced a total of 61 frequency 

values in uv2 /Hz from 0 to 30 Hz in 0.5 Hz increments.   

 This procedure was repeated for linked ears, average reference and Laplacian 

digital values for both the eyes closed and eyes open conditions, thus producing for a 
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given subject a total of six different 61 point FFT power spectral density values.  These 

values were then used to compute means and standard deviations for different age groups 

as described in the next section (5.0)   

5.0 – Amplifier and Digital Matching 

 The frequency characteristics of all amplifiers differ to some extent, especially in 

the < 3 Hz  and > 20 Hz frequency range and there are no universal standards that all 

EEG amplifier manufacturers must abide by.   Therefore, amplifier filter and gain 

characteristics must be equilibrated to the amplifier gains and frequency characteristics of 

the normative EEG amplifiers that acquired the EEG in the first place.  A simple method 

to accomplish this is to inject into each amplifier system microvolt sine waves from 0 to 

40 Hz in 1 Hz steps and at three different amplitudes.  The ratio of the frequency response 

characteristics between the normative EEG amplifiers and the amplifier characteristics by 

which EEG was measured from a patient can be used as equilibration factors to 

approximately match the norms.  There are some frequencies that are so severely 

attenuated by the amplifier filters that equilibration to the normative database amplifiers 

will not be able to recover the signal.  For example, rations of > 5.0 will significantly 

amplify the noise of the amplifiers where little or no EEG signal is present and render the 

Z scores invalid.   

 It should be kept in mind, that even with matching of amplifier characteristics 

within 3 to 5% error the enormous variability in skull thickness effects the amplitude and 

frequency characteristics of the EEG itself far more than slight differences in amplifier 

characteristics.   For example, the human skull is on the average 80 times less conductive 

than the brain and scalp.   Therefore, an individual with a 10% thinner skull may be result 
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in a 800% change in EEG amplitude across all frequencies.   

 

6.0- Statistical Foundations: Gaussian Distributions 

 The Gaussian or Normal distribution is a non-linear function that looks like a 

ideal bell shaped curve and provides a probability distribution which is symmetrical about 

its mean.   Skewness and kurtosis are measures of the symmetry and peakedness, 

respectively of the gaussian distribution.  In the ideal case of the Gaussian distribution 

skewness and kurtosis = 0.  In the real world of data sampling distributions skewness and 

kurtosis = 0 is never achieved and, therefore, some reasonable standard of deviation from 

the ideal is needed in order to determine the approximation of a distribution to Gaussian.   

In the case of the Lifespan EEG Database we used the criteria of approximation as a 

reasonable measure of Gaussian distribution.   The most serious type of deviation from 

normality is "Skewness" or a unsymmetrical distribution about the mean (e.g., a tail to the 

left or right of the mean), while the second form of deviation from normality "Kurtosis" is 

the amount of peakedness in the distribution, which is not as serious an offense since the 

variance is symmetrical about the mean (mean = median).  However, it is preferable to 

attempt to achieve normality as best as one can to insure unbiased estimates of error.  The 

primary reason to achieve "Normality" is that the sensitivity of any normative database is 

determined directly by the shape of the sampling distribution.   In a normal distribution, 

for example, one would expect that 5% of the samples will be equal to or greater than  2 

standard deviations and approximately .13 %  3 SD. 

 It is important to note that automatic and blindly applied transformations of EEG 

measures does not insure improved normality of the sampling distribution.  For example, 
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it is simple to demonstrate that while some transformations may improve the normality of 

distributions, these same transforms can also degrade the normality of the distributions.  

For example, table I shows the effects of transforms on the distributions of the various 

EEG variables in the Lifespan EEG reference normative database.   The “No Transform” 

column shows the deviation from Gaussian for the untransformed or raw  

 

 

Table I: Gaussian Distribution of the EEG Normative Database 
 

Skewness Kurtosis EEG 
Measure No Transform Transformed No Transform Transformed 

Coherence: 0.1% --- 3.8% --- 
Delta 0% --- 3.3% --- 
Theta 0% --- 2.9% --- 
Alpha 0% --- 3.2% --- 
Beta 0.2% --- 5.7% --- 

Phase (Absolute): 3.2%  0.9%* 27.2% 5.2%* 
Delta 2.3% 0.4%* 26.0% 3.6%* 
Theta 3.6% 0.5%* 28.9% 3.2%* 
Alpha 2.0% 2.1%* 23.0% 8.5%* 
Beta 5.0% 0.4%* 31.0% 5.4%* 

Amplitude Asym:          0% --- 2.6%  --- 
Delta 0% --- 2.0% --- 
Theta 0% --- 1.7% --- 
Alpha 0% --- 3.7% --- 
Beta 0% --- 3.0% --- 

Relative Power 0 % --- 4.5%       2.3% * 
Total Power 4.2%   0%* 25.4% 1.8% * 
Absolute Power 3.8%   0%* 30.6 1.8% * 

* Transformed variables 
 

EEG values and the “Transform” column shows the deviation from Gaussian for the 

transformed EEG values.  Table I shows that overall the EEG values are well behaved, 

even without transforms.   The only exceptions to this is in EEG phase, total power and 

absolute power.  Transforms of coherence and amplitude asymmetry actually increased 
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skewness or kurtosis, thus blind transformations is not recommended.   The asterisks in 

Table I identify which transformed variables are used in the Lifespan EEG normative 

database.  It can be seen that only the transformed EEG phase and the power variables are 

contained in the database.   Table I provides the statistics of Gaussian distribution of the 

database.   The user of the normative database should take into account the different 

degrees of Gaussian fits of the different variables to understand which variables deviate 

from normality and to what extent.   This information should be used when making 

clinical evaluations based on the database. 

 

6.1- Statistical Foundations: Cross-Validation 

 As mentioned in section 5.0 the statistical accuracy or sensitivity of a normative 

database is judged, directly, by the Gaussian distribution of the database.   The Supreme 

Court’s Dalbert  Factor One is met because the Gaussian is the null-hypothesis which 

was tested and Factor Two will be met by any database because the error estimate was 

tested and adjusted to approximate a Gaussian distribution.   Daubert factors one and two 

are expressed as the Gaussian sensitivity and accuracy of a database as provided by cross-

validation (see Figure 1).   There are many different ways to cross-validate a database.   

One is to obtain independent samples and another is to compute Z scores for each 

individual subject in the database.   The former is generally not possible because it 

requires sampling large numbers of additional subjects who have been carefully screened 

for clinical normality without a history of problems in school, etc.   The second method is 

certainly possible for any database.   Cross-validation of the Lifespan EEG database was 

accomplished by the latter method in which Z scores were computed using a leave-one-
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out procedure for all variables from each individual subject based on his/her respective 

age matched mean and SD in the normative database.   A distribution of Z scores for each 

of the 924 variables for each subject was then tabulated.   Table II shows the results of the 

cross-validation of the 625 subjects in the normative EEG database.   

 A perfect Gaussian cross-validation would be 2.3% at + 2 S.D., 2.3% at – 2 S.D., 

0.13% at + 3 S.D. and 0.13 % at – 3 S.D.   Table II shows a cross-validation grand 

average of 2.58% to 1.98%  2 S.D. and 0.18% to 0.14 %  3 S.D.  The Z score cross-

validation results in Table II shows that the database is statistically accurate and sensitive 

 
Table I I:  Gaussian Cross Validation of the EEG Normative Database 

 
Measure % >2 SD % <2 SD % >3 SD % <3 SD 

Delta Amplitude Asym. 2.58 3.08 0.21 0.19 

Theta Amplitude Asym. 2.29 2.62 0.15 0.13 

Alpha Amplitude Asym. 2.71 2.72 0.18 0.19 

Beta Amplitude Asym. 2.68 2.65 0.15 0.15 

Delta Coherence 1.99 2.14 0.14 0.22 

Theta Coherence 2.22 1.88 0.22 0.16 

Alpha Coherence 2.55 1.62 0.18 0.18 

Beta Coherence 2.20 1.38 0.18 0.10 

Delta Phase † 0.89 3.52 0 0.23 

Theta Phase † 1.61 1.87 0.04 0.13 

Alpha Phase † 1.61 1.66 0.04 0.24 

Beta Phase † 2.83 0.72 0.27 0.03 

Absolute Power † 4.15 1.67 0.23 0.12 

Relative Power 4.09 0.52 0.68 0 

Total Power † 4.23 1.60 0.08 0.04 

Average 2.58 1.98 0.18 0.14 

† Data was logged transformed 
 
with slight differences between variables.   For example, the power and EEG phase 

measures showed a small deviation from normality with a tendency toward skewness and 

kurtosis which is consistent with the values in Table I. 

 Figure 3 are the complex demodulation approximate Gaussian distributions in 

which the transforms or non-transforms in Table I were used and the sensitivity 
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calculated as illustrated in Figure 4.   Table III is an example of a standard Table of 

Sensitivities for one of the FFT databases. 

 Figure 4 is an illustrative bell shaped curve showing the ideal Gaussian and the 

average cross-validation values of the database by which estimates of statistical 

sensitivity can be derived.   True positives (TP) = the percentage of Z scores that lay 

within the tails of the  

 

Fig. 3 - Histograms of the complex demodulation Z Score Cross-Validation for all ages. 
 

Gaussian distribution, False negatives (FN) = the percentage of Z scores that fall outside 

of the tails of the Gaussian distribution.  The error rates or the statistical sensitivity of a 

QEEG normative database are directly related to the deviation from a Gaussian 
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distribution.   Figure 4 depicts a mathematical method of estimating the statistical 

sensitivity of a normative EEG database in terms of the deviation from Gaussian.  

 

 

Fig. 4 - A normal curve showing values of Z (1.96 ), which includes the proportion 
which is .95 of the total area.  The left and right tails of the distribution show probability 
values of .025 (one-tailed).  The results of the cross-validation of 625 subjects showed a 
classification accuracy that was normally distributed with 2.28% of the Z scores > ± 2 
standard deviations and 0.16% of the Z scores > ± 3 SD.  The clinical evaluation of EEG 
measures rely upon such a normal distribution by estimating the probability of finding an 
observed EEG value in a given range of a normal population and then empirically testing 
the sensitivity of the database by cross-validation. 
 

 Table III is an example of the calculated sensitivity of a EEG normative database 

for different age groups.  This same table of  
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Table III – Example of Normative EEG database sensitivities for different age 
groups at +/- 2 standard deviations and +/- 3 standard deviations.  Linked Ears, 
Eyes Closed Condition. 
 

sensitivity scores were calculated for the eyes open, eyes closed, absolute and relative 

power in current source density, average reference and linked ears.  The percentage of Z 

scores in the tails of the Gaussian Distribution at +/- 2 SD for the various databases (LE = 

Lined Ears, AVE = Average Reference and CSD = Current Source Density are shown in 

figures 5 and 6 for the FFT eyes open and eyes closed normative databases. 
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Fig. 5 - Bar graphs of percentage deviation of Z scores from the ideal Gaussian cross-
validation in eyes closed Linked Ears, Average Reference and Current Source Density 
norms.   
  

 The reliability of different Gaussian databases can be measured directly by their 

deviation from Gaussian because the same normative individual subjects are used to 

validate the different EEG normative databases.  For example, Average reference norms 

and Current  
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Fig. 6. - Bar graphs of the percentage deviation from the ideal Gaussian cross-validation 
in the eyes open condition Linked Ears, Average Reference and Current Source Density 
norms.   
Source Density norms, when cross-validated using the same subjects as for the Linked 

Ears norms gives rise to a reliability coefficient and a statistical reliability  

reference.   The null hypothesis , reliability = 0 can be directly tested using seven different 

norms in NeuroGuide.    

 Figure 7 is an example of visually verifiable reliability and repeatability of the 

spectra of Z scores using three different montages (Linked ears, Average Reference & 

Current Source Density) derived from the same edited samples of EEG in a traumatic 

brain injured patient (TBI) 
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Fig. 7 - Example of reliability between different normative databases and montages  in a 
TBI patient.  The general spectral shape is consistently present while the magnitude of 
deviation from normal and the spatial localization of the deviation increased from Linked 
Ears  to Average Reference to CSD.  CSD (i.e., the second spatial derivative) is also more 
“noisy” as expected. 
 

7.0 – Statistical Foundations: Validation by Clinical Correlations 

 Validity concerns the relationship between what is being measured and the 

natureand use to which the measurement is being applied.  Another way to put it is that 

validity is defined as the extent to which any measuring instrument measures what it is 

intended to measure.  Just as reliability is a matter of degree, so also is validity.    

Hypothesis formation and hypothesis testing as emphasized in Daubert  (1993) is an 

important part of determining the validity of a scientific measure.    
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7.1 –Predictive Validity of Normative Databases 

 Predictive (or criterion) validity has a close relationship to hypothesis testing by 

subjecting the measure to a discriminant analysis or cluster analysis to some statistical 

analysis in order to separate a clinical sub-type from a normal reference database.   

Nunnally (1978) gives a useful definition of predictive validity as:   “when the purpose is 

to use an instrument to estimate some important form of behavior that is external to the 

measuring instrument itself, the latter being referred to as criterion [predictive] validity.”  

For example, science “validates” the clinical usefulness of a measure by its false positive 

and false negative rates and by the extent to which there are statistically significant 

correlations to other clinical measures and, especially, to clinical outcomes.  

 An example of predictive validity of the Linked Ears qEEG normative database is 

shown in figure 8 in which normative database was used to discriminate traumatic brain 

injured patients from age matched normal control subjects at a classification accuracy =  

96.2% (Thatcher et al, 1989).   Another example of predictive validity is the ability of 

qEEG normative values to predict cognitive functioning.   Figure 9 shows correlations to 

Full Scale I.Q. as an example of predictive validity and content validity .    A more  
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Fig. 8 - Example of a typical scattergram in the content and predictive validation step in 
Figure 1.  The y-axis is Full Scale I.Q. and other neuropsychological tests and the X-Axis 
is amplitude asymmetry ([(R+L/R-L) x 200], see Thatcher et al, 1983 for further details).   
The correlation between I.Q. and amplitude asymmetry in this example was r = 0.460, N 
= 466 and P < .0001) 
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Fig. 9 - Example of a typical scattergram in the content and predictive validation step in 
Figure 1.  The y-axis is Full Scale I.Q. and other neuropsychological tests and the X-Axis 
is amplitude asymmetry ([(R+L/R-L) x 200], see Thatcher et al, 1983 for further details).   
The correlation between I.Q. and amplitude asymmetry in this example was r = 0.460, N 
= 466 and P < .0001) 
 

complete analysis of the predictive validity of the normative EEG database is shown in 

Table IV.    In this table the percentage of statistically significant correlations at P < .01.   

between qEEG normative EEG and WRAT School Achievement scores and measures of 

intelligence.    
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Table IV – Percentage of statistically significant correlations with Intelligence and 
School Achievement from  Linked Ears, Eyes Closed Condition. 
 

7.2 –Examples of Content Validity of Normative Databases 

   Content validity is defined by the extent to which an empirical measurement 

reflects a specific domain of content.  For example, a test in arithmetic operations would 

not be content valid if the test problems focused only on addition, thus neglecting 
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subtraction, multiplication and division.  By the same token, a content-valid measure of 

cognitive decline following a stroke should include measures of memory capacity, 

attention and executive function, etc.    

 There are many examples of the clinical content validity of qEEG and normative 

databases in ADD, ADHD, Schizophrenia, Compulsive disorders, Depression, Epilepsy, 

TBI and a wide number of clinical groupings of patients as reviewed by Hughes and John, 

(1999).   There are over 280 citations in the review by Hughes and John (1999) and there 

are approximately twenty three citations to peer reviewed journal articles in which a 

normal reference database was used.   A year 2003 Internet search of the National Library 

of Medicine will give citations to many more qEEG and content validity peer reviewed 

studies using a reference normal group than were included in the Hughes and John (1999) 

review. 

8.0 – Non-Parametric Statistics to Measure Content Validity of a qEEG Normative 
Database      
 
 Non-parametric statistics such as the Binomial Probability and for small sample 

sizes the Poisson Probability are simple non-parametric tests that are distribution free and 

automatically adjust for multiple comparisons.   The catch is that the non-parametric 

statistics must define an hypothesis by a specific statistical probability alpha level, 

otherwise they do not work. . The Binomial Distribution which is defined as  

    xNxN
x ppXP  )1( of successful outcomes at a specific probability, for example,  P 

< .01 for a specific hypothesis.     N = the number of Z-tests, p is the ‘success rate’ and 1 

– p  the ‘failure rate’ for the test of the null hypothesis, x = the number of observed Z 

scores at  a given probability level, e.g., P < .01.   For example, the null hypothesis is that 

by chance there will be 1 event per 64 observations at P < .01.   The experiment is run 

and there were 5 observations at P < .01.   The exact probability as computed by the 

Binomial Equation = P < .000421394.   
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 Figure 10 is an example of the statistical significance of some of the clinical 

correlations of the EEG database, i.e., Wide Range Achievement Test for Reading, 

Spelling, Arithmetic and Full Scale I.Q.     E(X) is the expected number of correlations at 

P < .01, X = the number of observed correlations at P < .01 and P(X) = the Binomial 

Probability to reject the null-hypothesis.     Table IV shows the observed percentage of 

correlations at P < .01 by which the X value in figure 10 corresponds..    

 

 

Fig. 10 - An example of the use of the non-Parametric statistic of the Binomial 
Probability Distribution to calculate the alpha level for the content validation of clinical 
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measures with the qEEG normative database.   The Binomial Distribution which is 
defined as      xNxN

x ppXP  )1( of successful outcomes at a specific probability, for 

example,  P < .01 for a specific hypothesis.     N = the number of Z-tests, p is the ‘success 
rate’ and 1 – p  the ‘failure rate’ for the test of the null hypothesis, x = the number of 
observed Z scores at  a given probability level, e.g., P < .01.   P(X) = the distribution free 
Binomial Probabilities.  The percentage of statistically significant correlations at P < .01 
is shown in Table IV. 
 

9.0 – Effect Size of a Normative EEG Database 

 The Effect Size of a normative database for any set of clinical measures can be 

estimated from the percentage of statistically significant correlations (Cohen, 1977).   

Table IV are effect sizes based on the percentage of statistically significant observations 

at alpha set at  P < .01.   Based on the percentage in Table IV, one can translate the 

number in the column X in figure 9 as the number observed out of a total universe of 

correlations.  It can be seen that amplitude asymmetry and ratios of power have the 

strongest effect size, especially in arithmetic and I.Q.  The peer reviewed literature clearly 

demonstrates that qEEG is clinically valid with varying effect sizes (Hughes and John, 

1999).  Estimates of effect size are relative clinical validation measures that a clinician or 

scientist takes into consideration when rendering a clinical or scientific judgment.     

Effect size is also useful in counseling graduate students to calculate the sample size that 

they will need in their thesis by Power Analysis. 

 

10.0 – Non-Parametric Statistics, Estimates of Alpha Levels and the Issue of 
Multiple Comparisons in a Single Subject Comparison to a EEG Normative 
Database 
 
 The use of many t-tests or Z tests in EEG applications requires some adjustment 

for the total number of tests in order to accurately estimate levels of alpha or the 
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probability of a Type I error (i.e., saying something is statistically significant when it is 

not).   As explained by Hayes (1973) Multiple comparisons refers to multiple group 

comparisons and not to the adjustment of the total number of t-tests or Z-tests, where as, 

non-parametric statistics is one of the best methods to adjust for both Type I and Type II 

error rates.   

 Figure 11 shows an example of the use of the Binomial Probability Distribution to 

determine the alpha level for a single subject’s comparison to the complex demodulation 

normative database.   The number of Z tests is represented as ‘N’, E(X) = the number 

expected by chance alone at P < .05 (Top of Figure 10) or at P < .01 (Bottom of Figure 

11),   X = the number of successful Z tests observed and P(X) = the Binomial Probability.  



 34 

 

Fig. 11 - An example of the use of the non-Parametric statistic of the Binomial 
Probability Distribution to calculate the alpha level for the complex demodulation norms 
for a given patient.  N = the total number of Z scores in the measure set, (X) = the number 
of observed Z scores at P < .05 and P .01; E(X) = the probability of the number of 
expected Z scores at P < .05 or at the probability P < .01.   
  

Figure 11 is only one example of how non-parametric statistics can be used   to eliminate 

multiple comparison problems.   

11.0 – Peer Reviewed Publications and Independent Replications 

 The Lifespan EEG database presented in this paper is unique and represents a 

sample or a “snap shot” of electrical events in a medium size population.  The oldest 

person in the database was age 82 but the sample size from 50 to age 100 needs to be 
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lexpanded as the population grows older.  Each normative EEG database is necessarily 

unique by virtue of subject selection, number of subjects, age span and arrangement of the 

subjects and the digital methods.   Also, each EEG database uses different methods to 

acquire the EEG and to edit and analyze the EEG and, therefore, replication and 

comparisons across EEG databases are often difficult.   In order to use any EEG 

normative database matching of amplifiers and analytic methods must first be 

accomplished.   It should be kept in mind, that even with matching of amplifier 

characteristics within 3 to 5% error the enormous variability in skull thickness effects the 

amplitude and frequency characteristics of the EEG itself far more than slight differences 

in amplifier characteristics.   For example, the human skull is on the average 80 times less 

conductive than the brain and scalp.   Therefore, an individual with a 10% thinner skull 

may be result in a 800% change in EEG amplitude across all frequencies.   

 Although precise replication is difficult for any of the existing EEG databases, 

nevertheless, independent replication of certain aspects of the Lifespan EEG Database 

have been published.   Also, most of the acquisition methods, analysis methods and 

results of experiments using the Lifespan EEG database have been published in refereed 

journals which are cited below.    Aspects of the development of relative power of the 

Lifespan EEG norms have been replicated in studies by Matousek and Petersen (1973) as 

analyzed by John et al (1977); Fischer (1987); Thatcher (1980), Epstein (1981), and van 

Baal (1995)   Aspects of the EEG coherence development in the database presented in 

this paper have been replicated by Gasser et al (1988) and by van Baal and others in 

genetic analyses (van Baal, 1997; van Beijsterveldt CE, et al, 1998;  van Baal GC, et al, 

1998). 
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